Issue 3, 2020

Enhanced thermopower in covalent graphite–molecule contacts

Abstract

The Seebeck effect is very attractive for technological applications as it leads to the direct conversion of heat into electricity. One of the key quantities determining the efficiency of such conversion is the thermopower S. In this paper we explore theoretically what electronic properties are responsible for the Seebeck effect in molecular junctions with graphite or graphene electrodes. We propose that S can be enhanced because of the combined effect of the dip in the density of states at the Fermi energy of these materials and the molecular resonance. Then to understand the impact of the covalent vs. non-covalent molecule–carbon bonding we calculate from first principles the electronic and transport properties of graphite/molecule/Au junctions, where both types of bonding have been reported experimentally. We ultimately predict that S is about 120 μV K−1 at room temperature for a 3,5-dimethyl-4-aminobenzene (DMAB) molecule covalently attached to the graphite electrode. This value is one order of magnitude larger than the typical values measured to date for molecular junctions and it is a signature of the direct C–C molecule–graphite bond. Finally we also demonstrate how one can control not just the absolute magnitude of S, but also its sign by designing the graphite–molecule contact. Our results lead the way towards the use of junctions with molecules covalently attached to a C-based substrate as possible new improved platforms for molecular thermoelectric devices.

Graphical abstract: Enhanced thermopower in covalent graphite–molecule contacts

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2019
Accepted
10 Dec 2019
First published
10 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 1466-1474

Enhanced thermopower in covalent graphite–molecule contacts

A. Droghetti and I. Rungger, Phys. Chem. Chem. Phys., 2020, 22, 1466 DOI: 10.1039/C9CP05474J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements