Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2020
Previous Article Next Article

Three-dimensional line edge roughness in pre- and post-dry etch line and space patterns of block copolymer lithography

Author affiliations

Abstract

In this work, we employ large-scale coarse-grained molecular dynamics (CGMD) simulations to study the three-dimensional line edge roughness associated with line and space patterns of chemo-epitaxially directed symmetric block copolymers (BCPs) on a flat substrate. The di-block copolymer chain length and interaction parameters are validated with the experimental BCP period, L0 and corresponding molecular weight. Defect-free lamellae are formed, after which the system is quenched below the glass transition temperature before selectively dry-etching off one of the BCP phases. The effect of varying etch-selectivity on post-etch resist domain morphology was studied. The roughness of the polymer domain was evaluated over three process stages: annealing, pre-etching, and post-etching. Power spectral density plots were then generated to elucidate the contributions of low and high frequency roughness for the three process stages. The roughness results obtained from simulations are shown to be in close agreement with the roughness result obtained from analyzing experimental SEM images. Parameters like the Hurtz roughness exponent and correlation length inherent to the process and the BCP were also revealed from the experimental study.

Graphical abstract: Three-dimensional line edge roughness in pre- and post-dry etch line and space patterns of block copolymer lithography

Back to tab navigation

Supplementary files

Article information


Submitted
02 Oct 2019
Accepted
02 Dec 2019
First published
02 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 478-488
Article type
Paper

Three-dimensional line edge roughness in pre- and post-dry etch line and space patterns of block copolymer lithography

S. Pinge, Y. Qiu, V. Monreal, D. Baskaran, A. Ravirajan and Y. L. Joo, Phys. Chem. Chem. Phys., 2020, 22, 478
DOI: 10.1039/C9CP05398K

Social activity

Search articles by author

Spotlight

Advertisements