Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Diversity of anisotropy effects in the breakup of metallic FCC nanowires into ordered nanodroplet chains

Author affiliations

Abstract

We have analysed the expressed manifestation of the anisotropy of surface energy density in the dynamics of ultrathin nanowires, which break up into disjointed clusters when annealed below their melting temperature. The breakup process is studied for different temperatures and orientations of the nanowire axis relative to its internal crystal structure using the Monte Carlo kinetic method. We have also presented an approximate analytical model of the instability of nanowires. Generally, the interpretation of experimental results refers to the theoretical model developed by Nichols and Mullins, which is based on conceptions about the Rayleigh instability of liquid jets. In both cases, the theories – which do not take into account the anisotropy of surface energy density – predict the breakup of a nanowire/liquid jet with radius r into fragments with an average length Λ = 9r. However, the observed value, Λ/r, often deviates from 9 either to lower values or to substantially greater ones (up to 24–30). Our results explain various observed features of the breakup and the significant variations in the values of its parameter Λ/r depending on experimental conditions. In particular, the ambiguous role of exchange by atoms of the surface of a nanowire with a surrounding layer of free atoms formed as a result of their rather intensive sublimation, which occurs in a number of cases, has been investigated. We have shown that this exchange can lead both to a decrease and to a significant increase in the parameter Λ/r. The obtained results could be potentially useful in applications such as the development of optical waveguides based on ordered nanoparticle chains.

Graphical abstract: Diversity of anisotropy effects in the breakup of metallic FCC nanowires into ordered nanodroplet chains

Back to tab navigation

Article information


Submitted
29 Nov 2019
Accepted
12 Feb 2020
First published
25 Mar 2020

This article is Open Access

CrystEngComm, 2020, Advance Article
Article type
Paper

Diversity of anisotropy effects in the breakup of metallic FCC nanowires into ordered nanodroplet chains

V. N. Gorshkov, V. V. Tereshchuk and P. Sareh, CrystEngComm, 2020, Advance Article , DOI: 10.1039/C9CE01893J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements