Jump to main content
Jump to site search


Electron transfer in a semiconductor heterostructure interface through electrophoretic deposition and a linker-assisted method

Author affiliations

Abstract

Modulating the heterostructured interface of semiconductor nanocrystals is being widely explored to enhance the charge transfer rate in photoelectrochemical cells. Here we use electrophoretic deposition and a linker-assisted method to fabricate heterostructured photoanodes based on CdSe quantum dots (QDs) or CdSe(S) nanoplates (NPLs)/TiO2 nanoparticles. The semiconductor nanocrystals exhibit red-shifted or dual photoluminescence emissions after electrophoretic deposition, due to the formation of surface traps. The calculated electron transfer rates in CdSe QDs/TiO2 nanoparticle photoanodes fabricated via electrophoretic deposition and 3-mercaptopropionic acid (MPA)-assisted attachment are 5.5 × 107 s−1 and 2.7 × 107 s−1, respectively, which are both higher than those obtained from NPLs/TiO2 nanoparticles ranging from 0.7 × 107 s−1 to 1.3 × 107 s−1. As a proof of concept, we used heterostructured semiconductor nanocrystals/TiO2 nanoparticles as photoanodes for solar-driven hydrogen generation. Upon one sun illumination, the saturated photocurrent densities of photoanodes fabricated via electrophoretic deposition were found to be higher than those of photoanodes prepared via MPA-assisted attachment, while the corresponding photoanode shows inferior long-term photostability due to the formation of surface traps on the QDs or NPLs during the electrophoretic deposition process. These results provide useful information for engineering the surface/dimension/composition of semiconductor nanocrystals, their adsorption on porous TiO2 films, and designing high-efficiency photoelectrodes in photoelectrochemical devices.

Graphical abstract: Electron transfer in a semiconductor heterostructure interface through electrophoretic deposition and a linker-assisted method

Back to tab navigation

Supplementary files

Article information


Submitted
31 Oct 2019
Accepted
22 Jan 2020
First published
22 Jan 2020

CrystEngComm, 2020, Advance Article
Article type
Paper

Electron transfer in a semiconductor heterostructure interface through electrophoretic deposition and a linker-assisted method

Y. Zhou, X. Tong, D. Benetti, Z. M. Wang, D. Ma, H. Zhao and F. Rosei, CrystEngComm, 2020, Advance Article , DOI: 10.1039/C9CE01729A

Social activity

Search articles by author

Spotlight

Advertisements