Jump to main content
Jump to site search


Formation of breathing pyrochlore lattice: structural, thermodynamic and crystal chemical aspects

Abstract

Pyrochlore lattice is a three-dimensional network of corner-sharing tetrahedra. Crystals with pyrochlore lattice formed by the atoms of transition metal give rise to a rich variety of condensed phases and novel phenomena caused by geometrical frustration. A type of this structure with different metal-metal distances is known as breathing pyrochlore lattice. The formation of breathing pyrochlore lattice is accompanied in many cases by clustering and the appearance of exotic ground states, as well as intriguing physical properties. The formation of breathing pyrochlore lattices was investigated on the example of F4 @#x0305;3m ordered pyrochlores in terms of group-theoretical analysis, Landau thermodynamics and crystal chemistry. In this article it has been shown that order parameter described Fd3 @#x0305;mF4 @#x0305;3m phase transition is realized in the displacements of the atoms located at 16c, 16d, 48f Wyckoff positions of the initial parent pyrochlore structure, as well as ordering of atoms located at 8b and 48f Wyckoff positions (the type of ordering atoms is 1:1 in the each case). For some ordered pyrochlores, we estimate the order parameter magnitude and its contribution to atomic displacements. Two main thermodynamic paths of the phase transitions between initial high-symmetry and low-symmetry phases occurring as a result of both second- and first-order phase transitions in the vicinity tricritical point are possible on the Landau-type phase diagram. The structural features of F4 @#x0305;3m ordered pyrochlores are established (breathing pyrochlore lattices, bridges between tetrahedral structural units, breathing six-member rings of tetrahedra, anion-centered clusters in the ordered α-pyrochlores, cage-structures in the ordered β-pyrochlores). The existence of new classes of pyrochlore-like materials that inherit the structural features of F4 @#x0305;3m ordered pyrochlores is predicted.

Back to tab navigation

Supplementary files

Article information


Submitted
16 Oct 2019
Accepted
02 Jan 2020
First published
02 Jan 2020

CrystEngComm, 2020, Accepted Manuscript
Article type
Paper

Formation of breathing pyrochlore lattice: structural, thermodynamic and crystal chemical aspects

M. V. Talanov and V. Talanov, CrystEngComm, 2020, Accepted Manuscript , DOI: 10.1039/C9CE01635J

Social activity

Search articles by author

Spotlight

Advertisements