Accelerating charge transfer to enhance H2 evolution of defect-rich CoFe2O4 by constructing a Schottky junction†
Abstract
We demonstrate a charge transfer boosted hydrogen (H2) evolution of transition metal oxides via a Schottky junction. The FeNi and metallic defect-rich CoFe2O4 (DCF) as well as semiconducting nitrogen-doped carbon (NC), named as FeNi/DCF/NC, possessed only 6.5% charge transfer resistance of DCF. Theoretical calculations indicate that the enhanced electron movement happened from FeNi/DCF to NC. The H2 evolution activity of FeNi/DCF/NC showed 5.8-fold improvement compared to that of DCF at the overpotential of 400 mV in 1.0 M KOH. This work provides an effective way to enhance the electrocatalytic activity of oxides for the H2 evolution reaction and related reactions.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        