Issue 89, 2020

Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation

Abstract

Recently, numerous research studies have contributed to engineering hydrogels by soaking strategies to obtain designed properties, from mechanical strengthening to environmentally adapting. Hydrogels are three-dimensional hydrophilic polymer networks dispersed in water with widespread applications. However, most of the traditional hydrogels possess limited mechanical strength and poor temperature and environmental tolerance, which limits their applications. Due to their unique water-rich property, the physical and chemical properties of hydrogels can be post-engineered by facile soaking strategies. The soaking strategies can be divided into two categories: the first involves soaking salt solutions into the aqueous phase of the gel, and the second involves soaking in organic solvents to displace the water in the gel, forming organohydrogels. In this feature article, we aim to summarize the most recent progress in designing and engineering hydrogels using soaking strategies, including strengthening hydrogels with superior mechanical properties, and providing the hydrogels with environmentally adapting properties, such as anti-freezing and anti-dehydration. The first section summarizes some common design principles and fabrication methods to strengthen hydrogels by soaking, and then it introduces some successful applications of these soaking-induced tough hydrogels. In the second section, the soaking strategy to engineer hydrogels with environmentally adapting properties is discussed. In the end, a brief outlook is proposed based on current challenges and the pros and cons of the soaking strategy.

Graphical abstract: Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation

Article information

Article type
Feature Article
Submitted
28 Jul 2020
Accepted
24 Sep 2020
First published
24 Sep 2020

Chem. Commun., 2020,56, 13731-13747

Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation

X. Zhou, C. Li, L. Zhu and X. Zhou, Chem. Commun., 2020, 56, 13731 DOI: 10.1039/D0CC05130F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements