Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with a focus on advanced fabrication techniques

Abstract

Over the last decade, 3D bioprinting has received immense attention from research communities for developing functional tissues. Thanks to the complexity of tissues, various bioprinting methods are exploited to figure out the challenges of tissue fabrication, in which hydrogels are widely adopted as a bioink in cell printing technologies based on the extrusion principle. Thus far, there is a wealth of the literature proposing the crucial parameters of extrusion-based bioprinting of hydrogel biomaterials (e.g., hydrogel properties, printing conditions, and tissue scaffold design) toward enhancing performance. Despite the growing research in this field, numerous challenges that hinder advanced applications still exist. Herein, the most recently reported hydrogel-based bioprinted scaffolds, i.e., skin, bone, cartilage, vascular, neural, and muscular (including skeletal, cardiac, and smooth), are systematically discussed with an emphasis on the advanced fabrication techniques from tissue engineering perspective. Methods covered include the multiple-dispenser, coaxial, and hybrid 3D bioprinting. The present work is a unique study to figure out the opportunities of the novel techniques to fabricate complicated constructs with structural and functional heterogeneity. Finally, the principal challenges of current studies and a vision of future research are presented.

Back to tab navigation

Article information


Submitted
13 Jun 2020
Accepted
09 Oct 2020
First published
09 Oct 2020

This article is Open Access

Biomater. Sci., 2020, Accepted Manuscript
Article type
Review Article

Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with a focus on advanced fabrication techniques

M. Askari, M. Afzali Naniz, M. Kouhi, A. Saberi, A. Zolfagharian and M. Bodaghi, Biomater. Sci., 2020, Accepted Manuscript , DOI: 10.1039/D0BM00973C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements