Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 9, 2020
Previous Article Next Article

H2S-releasing amphiphilic dipeptide hydrogels are potent S. aureus biofilm disruptors

Author affiliations

Abstract

As a gasotransmitter, hydrogen sulfide (H2S) has been studied to treat wounds and inflammation, but its potential antimicrobial effects in this context have not been evaluated. An H2S-releasing dipeptide hydrogel (S-FE), and several non-H2S-releasing control dipeptides, (C-FE, C-GE, FBA-FE, and FE where S = S-aroylthiooxime, an H2S donor; C = control, an oxime incapable of H2S release; FBA = 4-formylbenzamide, also incapable of H2S release; and E, F, G = glutamic acid, phenylalanine, and glycine, respectively), were studied to correlate differences in their chemical structures and H2S-releasing abilities with their antimicrobial effects on Staphylococcus aureus bacteria. Dipeptides with Phe (S-FE, C-FE, and FE) self-assembled into nanoribbons in water and displayed β-sheet formation and enhanced fluorescence, while the other two dipeptides (FBA-FE and C-GE) did not form assemblies in water. In vitro experiments with Staphylococcus aureus, which is a commonly found bacterium associated with wounds, showed significant antimicrobial effects from some of the dipeptides. Dipeptide S-FE inhibited bacterial growth more effectively than any of the controls, thereby limiting biofilm formation or disrupting established biofilms. These antimicrobial H2S-releasing dipeptide hydrogels provide a promising new approach to treat wound infections.

Graphical abstract: H2S-releasing amphiphilic dipeptide hydrogels are potent S. aureus biofilm disruptors

Back to tab navigation

Supplementary files

Article information


Submitted
13 Feb 2020
Accepted
19 Mar 2020
First published
31 Mar 2020

Biomater. Sci., 2020,8, 2564-2576
Article type
Paper

H2S-releasing amphiphilic dipeptide hydrogels are potent S. aureus biofilm disruptors

Y. Qian, A. Altamimi, S. A. Yates, S. Sarkar, M. Cochran, M. Zhou, N. Levi-Polyachenko and J. B. Matson, Biomater. Sci., 2020, 8, 2564
DOI: 10.1039/D0BM00241K

Social activity

Search articles by author

Spotlight

Advertisements