Jump to main content
Jump to site search


Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections

Author affiliations

Abstract

Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre sensors, incorporated into the lumen of endotracheal tubes (ETTs), to monitor in real time, Pseudomonas aeruginosa surface colonisation and biofilm formation. The wavelength shift of LPG attenuation bands was monitored for 24 h and compared with biofilm biomass, quantified using confocal fluorescence microscopy imaging. Biofilm formation was compared on uncoated ETTs and optical fibres, and on a biofilm resistant acrylate polymer, after challenge in an artificial sputum or minimal growth medium (RPMI-1640). The LPG sensor was able to detect a biofilm biomass as low as 81 μg cm−2, by comparison with the confocal image quantification. An empirical exponential function was found to link the optical attenuation wavelength shift with the inverse of the biofilm biomass, allowing quantification of biofouling from the spectral response. Quantification from the sensor allows infection interception and early device removal, to reduce, for example, the risk of ventilator associated pneumonia.

Graphical abstract: Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections

Back to tab navigation

Supplementary files

Article information


Submitted
06 Jun 2019
Accepted
03 Dec 2019
First published
21 Jan 2020

This article is Open Access

Biomater. Sci., 2020, Advance Article
Article type
Paper

Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections

Y. Kurmoo, A. L. Hook, D. Harvey, J. Dubern, P. Williams, S. P. Morgan, S. Korposh and M. R. Alexander, Biomater. Sci., 2020, Advance Article , DOI: 10.1039/C9BM00875F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements