Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Artificial Neural Network employment for elements determination in Mugil cephalus by ICP OES on Pontal Bay, Brazil

Abstract

Fish are important sources of protein, making them very significant in the human diet. Although the consumption of this food is beneficial to the health, it is essential that the product does not contain inorganic components above the limits recommended by the current legislation. In this way a method for determination of elements in fish (Mugil cephalus) samples was optimized. A simplex centroid mixture design with restriction was applied for optimization of the acid digestion of samples in an open system under reflux in order to evaluate the best ratio between the reagents HNO3, H2O2 and H2O. The results indicated that more intense analyte signals were obtained when a mixture containing 3.6 mL of HNO3 (65% v/v), 0.4 mL of H2O2 (30% v/v) and 6.0 mL of H2O was used. The accuracy of the method was assessed with CRM of oyster tissue (NIST 1566b). The method presented relative standard deviations (RSD’s) of 3.54%; 3.82%; 4.81% and 3.50% for Zn, Fe, Cu and S, respectively. The detection limits were 0.002 mg kg-1 for Cu and Zn, and 0.02 mg kg-1 for Fe and S. The proposed method was applied for the determination of Zn, Fe, Cu and S in fish samples. Kohonen Self-Organizing Map (KSOM) with K-means implementation were applied to better delimit the boundary between groups and the spatial and temporal influence on how concentrations of the chemical elements were perceived. To qualify the separation, the Davies-Bouldin and Silhouette indices were used, obtaining 0.5374 and 0.8541, respectively, indicating a satisfactory separation.

Back to tab navigation

Article information


Submitted
18 Apr 2020
Accepted
07 Jun 2020
First published
08 Jun 2020

Anal. Methods, 2020, Accepted Manuscript
Article type
Paper

Artificial Neural Network employment for elements determination in Mugil cephalus by ICP OES on Pontal Bay, Brazil

M. A. S. Batista, L. N. Santos, B. Chagas, I. P. Lôbo, C. G. Novaes, W. N. Guedes, R. M. de Jesus, F. A. C. Amorim, C. S. V. Pacheco, L. S. Moreira and E. G. P. da Silva, Anal. Methods, 2020, Accepted Manuscript , DOI: 10.1039/D0AY00799D

Social activity

Search articles by author

Spotlight

Advertisements