Jump to main content
Jump to site search


Versatile additively manufactured (3D printed) wall-jet flow cell for high performance liquid chromatography- amperometric analysis: Application to the detection and quantification of New Psychoactive Substances (NBOMes)

Abstract

Additive manufacturing (AM/3D printing) is an emerging technology of vast applicability receiving significant interest in a plethora of industrial domains and scientific research since it allows the rapid translation of designs produced via computer software, into AM/3D printed objects. To date, AM/3D printed devices have been examined for their utilisation as convenient and cost-effective tools towards the detection and quantification of prevalent drugs of abuse. Herein, a novel AM/3D printed wall-jet flow cell was fabricated specifically for employment in high performance liquid chromatography-amperometric detection (HPLC-AD) of various analytes (New Psychoactive Substances). Five sensing AM/3D printed platforms were investigated, utilising different working electrodes, namely; screen-printed graphite electrodes (SPEs), AM/3D Proto-Pasta, AM/3D Black Magic, graphite sheet and AM/3D printed nanographite (NG) /polylactic acid (PLA)) towards the detection of New Psychoactive Substances. The flow cell was also optimised with respect to the cell geometry demonstrating significant benefits such as simple production and operation and the ability to tailor the platform to a variety of working electrodes. The AM/3D printed sensing platforms were characterised towards the (electro)analytical detection of four N-benzylmethoxy- derivatives: 25F-NBOMe, 25C-NBOMe, 25B-NBOMe and 25I-NBOMe. Furthermore, the (electro)analytical performance of the flow cells were compared with the findings in our previous work comprising of a commercially available impinging jet flow cell. The SPEs and the graphite sheet were found to demonstrate superior electrochemical (analytical) sensitivity and higher reproducibility towards the quantification of the drugs in question, followed by the NG/PLA AM, Proto-Pasta and the Black Magic. The working electrodes that exhibited (electro)analytical responses were employed for the analysis of NBOMe derivatives in three simulated blotter papers.

Back to tab navigation

Supplementary files

Article information


Submitted
09 Mar 2020
Accepted
26 Mar 2020
First published
26 Mar 2020

This article is Open Access

Anal. Methods, 2020, Accepted Manuscript
Article type
Paper

Versatile additively manufactured (3D printed) wall-jet flow cell for high performance liquid chromatography- amperometric analysis: Application to the detection and quantification of New Psychoactive Substances (NBOMes)

C. E. Banks, T. Belal, M. P. Down , H. M. Elbardsiy, E. M. Richter, R. Crapnell, W. Talaat, P. Gough and H. Daabees, Anal. Methods, 2020, Accepted Manuscript , DOI: 10.1039/D0AY00500B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements