Jump to main content
Jump to site search

Issue 21, 2020
Previous Article Next Article

A simple paper-based approach for arsenic determination in water using hydride generation coupled with mercaptosuccinic-acid capped CdTe quantum dots

Author affiliations

Abstract

This research aims to develop a simple paper-based device for arsenic detection in water samples where a hydride generation technique coupled with mercaptosuccinic acid-capped CdTe quantum dots (MSA-CdTe QDs) as a detection probe was applied to the detection system. MSA-CdTe QDs were coated on a paper strip, inserted into the cover cap of a reaction bottle, to react with the developed arsine gas. Fluorescent emission of the QDs was quenched upon the presence of arsenic in solutions, whereby only a small amount of the MSA-CdTe QDs was required. The excitation and emission wavelengths for fluorescent detection were 278.5 nm and 548.5 nm, respectively. The proposed system provided a limit of detection of 0.016 mg L−1 and a limit of quantitation of 0.053 mg L−1, and a detection range of 0.05–30.00 mg L−1. In addition, the tolerance level of the detection approach to interference by other vapor-generated species was successfully improved by placing another paper strip coated with a solution of saturated lead acetate in front of the detection paper strip. This developed approach offered a simple and fast, yet accurate and selective detection of arsenic contaminated in water samples. In addition, the mechanism of fluorescent quenching was also proposed.

Graphical abstract: A simple paper-based approach for arsenic determination in water using hydride generation coupled with mercaptosuccinic-acid capped CdTe quantum dots

Back to tab navigation

Supplementary files

Article information


Submitted
10 Feb 2020
Accepted
01 May 2020
First published
07 May 2020

Anal. Methods, 2020,12, 2718-2726
Article type
Paper

A simple paper-based approach for arsenic determination in water using hydride generation coupled with mercaptosuccinic-acid capped CdTe quantum dots

O. Thepmanee, K. Prapainop, O. Noppha, N. Rattanawimanwong, W. Siangproh, O. Chailapakul and K. Songsrirote, Anal. Methods, 2020, 12, 2718
DOI: 10.1039/D0AY00273A

Social activity

Search articles by author

Spotlight

Advertisements