Issue 9, 2020

Breast cancer analysis by confocal energy dispersive micro-XRD

Abstract

In this work, the confocal energy dispersive micro-XRD technique has been employed to efficiently study differences between normal and malignant carcinomas in breast tissues. This technique has been implemented with low angular divergence glass monocapillaries in the excitation and detection channels. The microdiffractometer operates with a scattering angle of (20.3 ± 0.9)° that defines a cross section for analysis (0.178 mm × 0.175 mm), with a depth resolution of 1.18 mm. The obtained momentum transfer resolution between 3.9 and 10.9% was found to be highly useful to identify the scattering profiles of adipose tissues without any data processing. Differentiation between tissues with similar scattering profiles, such as fibroglandular and neoplastic tissues, has been achieved by processing the spectra within the framework of diffraction theory for scattering intensity. The obtained results allowed the development of a deterministic diagnostic model based on the evaluation of the depth profiles by confocal micro-XRD. In this model, the modulation of the scattering profiles caused by X-ray attenuation was analyzed to differentiate neoplastic tissues. The spatial resolution of the technique was the key aspect of the process, helping to detect variations in X-ray attenuation and to select uniform volume of analysis without superimposed scattering profiles.

Graphical abstract: Breast cancer analysis by confocal energy dispersive micro-XRD

Article information

Article type
Paper
Submitted
09 Oct 2019
Accepted
28 Jan 2020
First published
29 Jan 2020

Anal. Methods, 2020,12, 1250-1256

Breast cancer analysis by confocal energy dispersive micro-XRD

R. O. Escudero, M. C. Cabral, M. Valladares, M. A. Franco and R. D. Perez, Anal. Methods, 2020, 12, 1250 DOI: 10.1039/C9AY02183C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements