Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Evaluating biochemical differences in thyroglobulin from normal and goiter tissues by infrared spectral imaging

Author affiliations

Abstract

Thyroglobulin is a glycoiodoprotein that is produced by thyroid follicular cells; it is stored in follicles in structures known as colloids. The main function of this protein is to stock the hormones triiodothyronine (T3) and thyroxine (T4) until the body requires them. This study aims to demonstrate that infrared spectral imaging with appropriate multivariate analysis can reveal biochemical changes in this glycoprotein. The results achieved herein point out biochemical differences in the colloid samples obtained from normal and goiter patients including glycosylation and changes in the secondary conformational structure. We have presented the first spectral histopathology-based method to detect biochemical differences in thyroid colloids, such as TG iodination, glycosylation, and changes in the secondary structure in normal and goiter patients. The observed changes in the colloids were mainly due to the alterations in amide I and amide II (secondary conformation of proteins) and there is a correlation with different glycosylation between normal and goiter tissues.

Graphical abstract: Evaluating biochemical differences in thyroglobulin from normal and goiter tissues by infrared spectral imaging

Back to tab navigation

Article information


Submitted
08 Apr 2020
Accepted
21 Aug 2020
First published
05 Oct 2020

Analyst, 2020, Advance Article
Article type
Paper

Evaluating biochemical differences in thyroglobulin from normal and goiter tissues by infrared spectral imaging

T. M. Pereira, M. Diem, L. Bachmann, B. Bird, M. Miljković and D. M. Zezell, Analyst, 2020, Advance Article , DOI: 10.1039/D0AN00700E

Social activity

Search articles by author

Spotlight

Advertisements