Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 11, 2020
Previous Article Next Article

Ionophore-based pH independent detection of ions utilizing aggregation-induced effects

Author affiliations

Abstract

Ionophores have been integrated into various electrochemical and optical sensing platforms for the selective detection of ions. Previous ionophore-based optical sensors rely on a H+ chromoionophore as the signal transducer and consequently, suffered from a pH cross-response. pH independent methods were proposed very recently by utilizing the solvatochromic dyes or the exhaustive mode. Here, we report a pH independent sensing principle based on nanospheres containing ionophores. As the ion-exchange occurs, the signal transducer undergoes aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ), leading to a dramatic change in fluorescence intensity. The principle was evaluated on different ionophores including those selective for K+, Na+, Ca2+, and Pb2+. The nanospheres were also introduced into microfluidic chips and successfully applied for the determination of sodium and potassium ion concentrations in diluted blood serum and urine samples.

Graphical abstract: Ionophore-based pH independent detection of ions utilizing aggregation-induced effects

Back to tab navigation

Supplementary files

Article information


Submitted
11 Mar 2020
Accepted
07 Apr 2020
First published
07 Apr 2020

Analyst, 2020,145, 3846-3850
Article type
Paper

Ionophore-based pH independent detection of ions utilizing aggregation-induced effects

R. Wang, X. Du, X. Ma, J. Zhai and X. Xie, Analyst, 2020, 145, 3846
DOI: 10.1039/D0AN00486C

Social activity

Search articles by author

Spotlight

Advertisements