Issue 9, 2020

An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal–organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system

Abstract

In this work, a sensitive and selective electrochemiluminescent aptasensor was proposed based on the enhancing mechanism of the metal–organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system for a diethylstilbestrol assay. Herein, 3,4,9,10-perylenetetracarboxylic acid was selected as the major luminophore, and the metal–organic framework NH2-MIL-125(Ti) displayed a large specific surface area to immobilize abundant PTCA molecules to facilitate electrochemiluminescence efficiency. Besides, the metal–organic framework NH2-MIL-125(Ti) was used as a novel catalyst in the 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system, which could react with the co-reactant K2S2O8 to produce more SO4˙. In addition, we introduced the amino-aptamer of diethylstilbestrol; due to the specific binding affinity between the aptamer and diethylstilbestrol, a selective electrochemiluminescent aptasensor for diethylstilbestrol was thus developed here. Under the optimal conditions, a wide detection range from 1.0 fM to 1.0 μM with a low detection limit of 0.28 fM (S/N = 3) was obtained. More importantly, the residual diethylstilbestrol in water was detected by the developed aptasensor; this confirmed that this method has good performance and potential applications in real samples.

Graphical abstract: An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal–organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2020
Accepted
06 Mar 2020
First published
07 Mar 2020

Analyst, 2020,145, 3306-3312

An ultrasensitive electrochemiluminescence aptasensor for the detection of diethylstilbestrol based on the enhancing mechanism of the metal–organic framework NH2-MIL-125(Ti) in a 3,4,9,10-perylenetetracarboxylic acid/K2S2O8 system

J. Li, X. Shan, D. Jiang and Z. Chen, Analyst, 2020, 145, 3306 DOI: 10.1039/D0AN00212G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements