Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1

Author affiliations

Abstract

The enzyme isocitrate dehydrogenase 1 (IDH1) catalyzes the conversion of isocitrate to alpha-ketoglutarate (αKG) and has emerged as an important therapeutic target for glioblastoma multiforme (GBM). Current methods for assaying IDH1 remain poorly suited for high-throughput screening of IDH1 antagonists. This paper describes a high-throughput and quantitative assay for IDH1 that is based on the self-assembled monolayers for matrix-assisted laser desorption/ionization-mass spectrometry (SAMDI-MS) method. The assay uses a self-assembled monolayer presenting a hydrazide group that covalently captures the αKG product of IDH1, where it can then be detected by MALDI-TOF mass spectrometry. Co-capture of an isotopically-labeled αKG internal standard allows the αKG concentration to be quantitated. The assay was used to analyze a series of standard αKG solutions and produced minimal error in measured αKG concentration values. The suitability of the assay for high-throughput analysis was evaluated in a 384-sample biochemical IDH1 screen. Cells expressing IDH1 were lysed and the lysate was applied to the monolayer to capture αKG, which was then quantitated using the SAMDI-MS assay. Cells in which IDH1 expression was reduced by small-interfering RNA exhibited a corresponding decrease in αKG concentration as measured by the assay. Application of the assay toward the high-throughput screening of IDH1 inhibitors or knockdown agents may facilitate the discovery of treatments for GBM.

Graphical abstract: A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jan 2020
Accepted
08 Apr 2020
First published
09 Apr 2020

Analyst, 2020, Advance Article
Article type
Paper

A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1

S. E. Anderson, N. S. Fahey, J. Park, P. T. O'Kane, C. A. Mirkin and M. Mrksich, Analyst, 2020, Advance Article , DOI: 10.1039/D0AN00174K

Social activity

Search articles by author

Spotlight

Advertisements