Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 7, 2020
Previous Article Next Article

Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode

Author affiliations

Abstract

Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their properties is still limited due to their heterogenous structure, dynamic nature, and lack of analytical techniques to probe their electronic and ionic properties in situ. In this study, we used a multi-functional scanning electrochemical microscopy (SECM) technique based on an amperometric ion-selective mercury disc-well (HgDW) probe for spatially-resolving changes in interfacial Li+ during solid electrolyte interphase (SEI) formation and for tracking its relationship to the electronic passivation of the interphase. We focused on multi-layer graphene (MLG) as a model graphitic system and developed a method for ion-flux mapping based on pulsing the substrate at multiple potentials with distinct behavior (e.g. insertion–deinsertion). By using a pulsed protocol, we captured the localized uptake of Li+ at the forming SEI and during intercalation, creating activity maps along the edge of the MLG electrode. On the other hand, a redox probe showed passivation by the interphase at the same locations, thus enabling correlations between ion and electron transfer. Our analytical method provided direct insight into the interphase formation process and could be used for evaluating dynamic interfacial phenomena and improving future energy storage technologies.

Graphical abstract: Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode

Back to tab navigation

Supplementary files

Article information


Submitted
31 Dec 2019
Accepted
19 Feb 2020
First published
19 Feb 2020

Analyst, 2020,145, 2631-2638
Article type
Paper

Coordinated mapping of Li+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode

Z. T. Gossage, J. Hui, D. Sarbapalli and J. Rodríguez-López, Analyst, 2020, 145, 2631
DOI: 10.1039/C9AN02637A

Social activity

Search articles by author

Spotlight

Advertisements