Jump to main content
Jump to site search

Bio-inspired highly selective enzymatic glucose sensor using red blood cell membrane


In the development of enzymatic glucose sensors, accurate glucose sensing has been a challenging task because of the existence of numerous interfering molecules in blood. Meanwhile, red blood cells (RBC) selectively uptake glucose via membrane protein called glucose transporter-1. In this study, we developed the RBC membrane (RBCM)-coated enzymatic glucose sensors that mimic the glucose uptake. The RBCM-coated sensors was examined by scanning electron microscopy, atomic force microscopy, and ATR-FTIR. We optimized the glucose permeability of RBCM filter by controlling the thickness of the filter. The sensing range of the optimized sensor was 1–15 mM, detection limit was 0.66 mM, and the sensitivity was 2.978 μA/mM. Intriguingly, the RBCM-coated sensor was highly accurate and precise even if the glucose coexist with interfering molecules (e.g., mannose, galactose, ascorbic acid, uric acid, and cysteine). For each interfering molecule, the errors of our sensor was 0.8 to 2.3%, which was 4.8-14.2 times more accurate than the uncoated one. Similar result was verified for human serum containing countless interfering molecules. Also, the sensing performance of the sensor was consistent after 4 weeks storage. The results suggest that applying the RBCM may improve the selectivity of various types of glucose sensors including continuous monitoring system.

Back to tab navigation

Supplementary files

Article information

30 Dec 2019
First published
03 Jan 2020

Analyst, 2020, Accepted Manuscript
Article type

Bio-inspired highly selective enzymatic glucose sensor using red blood cell membrane

I. Kim, C. Kim, D. Lee, S. W. Lee, G. Lee and D. S. Yoon, Analyst, 2020, Accepted Manuscript , DOI: 10.1039/C9AN02421B

Social activity

Search articles by author