Investigating C
C positions and hydroxylation sites in lipids using Paternò–Büchi functionalization mass spectrometry†
Abstract
Lipid oxidation plays a major role in biochemical processes and nutrition. Structural changes during oxidation can lead to alterations of lipid functions. Rancidification and production of secondary lipid messengers are well-known examples for the impact of oxidation on lipid function. Especially lipids with a high degree of unsaturation are prone to oxidize. In order to investigate structural changes of lipids upon oxidation, we here introduce a photochemical Paternò–Büchi functionalization workflow and subsequent mass spectrometric analysis for analysis of unsaturated, oxidized lipids. Results for hydroxylated fatty acids and triglycerides containing isolated and conjugated C
C bonds will be presented making use of 3-acetylpyridine as a photochemically active compound. Photochemical derivatization is performed in nano-electrospray emitter tips in 30 s resulting in the formation of oxetanes without inducing light-triggered oxidation of analytes. Collisional-activation of photoproducts facilitates selective cleavage of oxetane moieties. Resulting fragment ions not only allow the determination of C
C bond locations for isolated and conjugated C
C bonds but also restrict the site of oxidation. By registering the mass shift in some fragment ions of +15.99 Da due to hydroxylation, the oxidized sections of lipids can be identified. In order to demonstrate its analytical robustness, the method is applied to determine the structural impact of non-selective ambient oxidation on fatty acids, triglycerides and complex triglyceride mixtures obtained from Sacha inchi oil.

Please wait while we load your content...
C positions and hydroxylation sites in lipids using Paternò–Büchi functionalization mass spectrometry