Jump to main content
Jump to site search


Investigating C[double bond, length as m-dash]C positions and hydroxylation sites in lipids using Paternò–Büchi functionalization mass spectrometry

Author affiliations

Abstract

Lipid oxidation plays a major role in biochemical processes and nutrition. Structural changes during oxidation can lead to alterations of lipid functions. Rancidification and production of secondary lipid messengers are well-known examples for the impact of oxidation on lipid function. Especially lipids with a high degree of unsaturation are prone to oxidize. In order to investigate structural changes of lipids upon oxidation, we here introduce a photochemical Paternò–Büchi functionalization workflow and subsequent mass spectrometric analysis for analysis of unsaturated, oxidized lipids. Results for hydroxylated fatty acids and triglycerides containing isolated and conjugated C[double bond, length as m-dash]C bonds will be presented making use of 3-acetylpyridine as a photochemically active compound. Photochemical derivatization is performed in nano-electrospray emitter tips in 30 s resulting in the formation of oxetanes without inducing light-triggered oxidation of analytes. Collisional-activation of photoproducts facilitates selective cleavage of oxetane moieties. Resulting fragment ions not only allow the determination of C[double bond, length as m-dash]C bond locations for isolated and conjugated C[double bond, length as m-dash]C bonds but also restrict the site of oxidation. By registering the mass shift in some fragment ions of +15.99 Da due to hydroxylation, the oxidized sections of lipids can be identified. In order to demonstrate its analytical robustness, the method is applied to determine the structural impact of non-selective ambient oxidation on fatty acids, triglycerides and complex triglyceride mixtures obtained from Sacha inchi oil.

Graphical abstract: Investigating C [[double bond, length as m-dash]] C positions and hydroxylation sites in lipids using Paternò–Büchi functionalization mass spectrometry

Back to tab navigation

Supplementary files

Article information


Submitted
10 Nov 2019
Accepted
22 Jan 2020
First published
23 Jan 2020

Analyst, 2020, Advance Article
Article type
Paper

Investigating C[double bond, length as m-dash]C positions and hydroxylation sites in lipids using Paternò–Büchi functionalization mass spectrometry

P. Esch and S. Heiles, Analyst, 2020, Advance Article , DOI: 10.1039/C9AN02260K

Social activity

Search articles by author

Spotlight

Advertisements