Jump to main content
Jump to site search

Issue 3, 2020
Previous Article Next Article

An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection

Author affiliations

Abstract

Detecting trace amounts of copper ions (Cu2+) is of high importance since copper is an essential element in the environment and the human body. Despite the recent advances in Cu2+ detection, the current approaches still suffer from insensitivity and lack of in situ detection in living cells. In the present work, a fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles (MOF-525 NPs) is proposed for sensitive and selective monitoring of Cu2+ in aqueous solution and living cells. The MOF-525 NPs with attractive properties, including ultrasmall size, good water dispersity and intense red fluorescence, are prepared via a facile and environment-friendly hydrothermal route. The fluorescence signal of MOF-525 NPs could be quenched statically by Cu2+ with high selectivity due to the strong affinity of Cu2+ to the porphyrin ligand in MOF-525. The proposed fluorescent nanosensor has a linear response in the range of 1.0–250 nM with a low detection limit of 220 pM. Furthermore, it is successfully employed for the detection of Cu2+ in water samples and the intracellular imaging of Cu2+ in living cells, demonstrating its great potential in the sensing and biological fields.

Graphical abstract: An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection

Back to tab navigation

Supplementary files

Article information


Submitted
07 Nov 2019
Accepted
17 Dec 2019
First published
17 Dec 2019

Analyst, 2020,145, 797-804
Article type
Paper

An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection

C. Cheng, R. Zhang, J. Wang, Y. Zhang, C. Wen, Y. Tan and M. Yang, Analyst, 2020, 145, 797
DOI: 10.1039/C9AN02231G

Social activity

Search articles by author

Spotlight

Advertisements