Jump to main content
Jump to site search


Rapid and specific duplex detection of methicillin-resistant Staphylococcus aureus genes by surface-enhanced Raman spectroscopy

Author affiliations

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is considered to be one of the important hospital-acquired pathogens. MRSA is also commonly associated with hospital-acquired infections and mortality. Quantitative and precise detection of MRSA is essential for rapid diagnosis and subsequent effective disease management strategies. We herein developed a highly specific method for rapid MRSA detection that combines surface-enhanced Raman spectroscopy (SERS) nanotags and polymerase chain reaction (PCR). SERS provided the sensitivity and spectral multiplexing capability while PCR provided the specificity required for the assay. The method was tested by the simultaneous detection of two MRSA specific genes (mecA and femA) amplified from genomic DNA isolated from clinical specimens. Magnetic isolation and rapid duplex detection were performed to obtain a detectable signal down to 104 input copies within 80 min. This demonstrated the potential of the SERS–PCR based approach for the accurate identification of MRSA at an early-diagnosis stage. This study also provides an alternative approach to the existing methods for detecting clinical targets without compromising sensitivity and selectivity, and with minimal handling steps. We thus believe that this approach will find a broad application in clinical applications.

Graphical abstract: Rapid and specific duplex detection of methicillin-resistant Staphylococcus aureus genes by surface-enhanced Raman spectroscopy

Back to tab navigation

Supplementary files

Article information


Submitted
02 Oct 2019
Accepted
29 Jan 2020
First published
30 Jan 2020

Analyst, 2020, Advance Article
Article type
Paper

Rapid and specific duplex detection of methicillin-resistant Staphylococcus aureus genes by surface-enhanced Raman spectroscopy

P. R. Potluri, V. K. Rajendran, A. Sunna and Y. Wang, Analyst, 2020, Advance Article , DOI: 10.1039/C9AN01959F

Social activity

Search articles by author

Spotlight

Advertisements