Jump to main content
Jump to site search


One-Step Rapid Synthesis of Ni6(C12H25S)12 Nanoclusters for Electrochemical Sensing of Ascorbic Acid

Abstract

Metal nanoclusters (NCs) are highly desirable as active catalysts due to their highly active surface atoms. Among the reported metal clusters, nickel nanoclusters (Ni NCs) have been less well developed than others, such as gold, silver and copper. Herein a simple method is developed to synthesize atomically precise Ni clusters with the molecular formula Ni6(C12H25S)12. Moreover, the single crystal of Ni6(C12H25S)12 cluster is also obtained. The composition, morphology and optical properties of the prepared Ni6 clusters are characterized by X-¬ray crystallography, XPS, XRD, SEM, HRTEM, FTIR and UV-Vis spectroscopy. The Ni cluster is composed of six nickel atoms to form a hexagonal ring with an exterior 1-dodecanethiol shell, like a double crown. Meanwhile, the Ni6 NCs can be self-assembled into nanosheets due to the uniform size. It was found that the Ni6(C12H25S)12 clusters loaded on carbon black exhibit higher electrocatalytic activity than Ni nanoparticles towards ascorbic acid (AA) oxidation. The Ni6 clusters show high sensing performance for AA with a wide linear range (1–3212 μM) and a low detection limit of 0.1 μM (S/N = 3). The significantly enhanced catalytic activity can be ascribed to the high fraction of surface Ni atoms with low coordination in the sub-nanometer clusters. The present work not only provides a straightforward method for synthesizing atomically precise metal clusters but also indicates that ultrasmall Ni clusters can be used as highly efficient catalyst for the electrochemical detection of AA.

Back to tab navigation

Supplementary files

Article information


Submitted
30 Sep 2019
Accepted
31 Dec 2019
First published
02 Jan 2020

Analyst, 2020, Accepted Manuscript
Article type
Paper

One-Step Rapid Synthesis of Ni6(C12H25S)12 Nanoclusters for Electrochemical Sensing of Ascorbic Acid

Z. Zhuang and W. Chen, Analyst, 2020, Accepted Manuscript , DOI: 10.1039/C9AN01947B

Social activity

Search articles by author

Spotlight

Advertisements