Jump to main content
Jump to site search

Issue 7, 2020
Previous Article Next Article

Molecular conducting magnetic heterostructures

Author affiliations


Building molecular conducting magnets has been of considerable interest due to their metallic transport and magnetic properties. Conjugated aniline anions and transition-metal cations are recognized to synthesize such π–d interaction frameworks. Here, an interfacial assembly of quasi-two-dimensional aniline heterojunction frameworks is developed, which consists of a proton-aniline conducting layer (conductivity of 9.2 × 102 S cm−1) and a transition metal–aniline magnetic layer. The two-dimensional aniline coordination framework with pronounced π–d interactions is indispensable for obtaining ordered spin states and metallic transport conductivity. We apply optical and Raman spectroscopy to study the interactions between the metal cations and nitrogen atoms in the aniline chains. The bilayer heterostructure maintains a high conductivity of 3.5 × 102 S cm−1 and increased magnetization, while the coupling of metallic conducting and magnetic layers leads to an enhanced magnetoconductance of 0.4% under a magnetic field of 70 kOe.

Graphical abstract: Molecular conducting magnetic heterostructures

Back to tab navigation

Supplementary files

Article information

05 Oct 2019
26 Dec 2019
First published
30 Dec 2019

J. Mater. Chem. C, 2020,8, 2228-2231
Article type

Molecular conducting magnetic heterostructures

F. Hu, Y. Hu, Y. Huang, C. Li, R. Yang and S. Ren, J. Mater. Chem. C, 2020, 8, 2228
DOI: 10.1039/C9TC05450B

Social activity

Search articles by author