Jump to main content
Jump to site search

Issue 32, 2020
Previous Article Next Article

Pb(Fe0.5Nb0.5)O3–BiFeO3-based multicalorics with room-temperature ferroic anomalies

Author affiliations

Abstract

The search for new single-phase multicaloric materials, combining electrocaloric and magnetocaloric effects, is just at its beginning. Since the highest caloric effects are obtained near ferroic phase transitions, multiferroics with room-temperature ferroic anomalies are promising candidates for multicaloric cooling. In this work, such materials were prepared by tailoring the temperature of the ferroic anomalies by introducing BiFeO3, a material possessing high-temperature ferroic phase transitions, into the multicaloric Pb(Fe0.5Nb0.5)O3 to form a solid solution. A series of (1−x)Pb(Fe0.5Nb0.5)O3xBiFeO3 (x = 0–0.5) were prepared. Among them, 0.8Pb(Fe0.5Nb0.5)O3–0.2BiFeO3 exhibits both dielectric permittivity and magnetic susceptibility anomalies at room temperature and is therefore one of the first such single-phase materials. However, at higher temperatures the material exhibits excessive Joule heating that critically degrades the electrocaloric cooling effect, while the antiferromagnetic nature of the material results in a low magnetocaloric response. Because of that, the multicaloric properties of 0.8Pb(Fe0.5Nb0.5)O3–0.2BiFeO3 were further improved by doping the material with Mn and Gd ions. This results in a composition with negligible Joule heating up to 75 °C and with room-temperature electrocaloric effect of more than 1 °C, and a high magnetocaloric effect of ∼3 °C at cryogenic temperatures. Furthermore, this material also exhibits the highest room-temperature magnetocaloric effect (∼8 × 10−3 °C) among all already known Pb(Fe0.5Nb0.5)O3-based multicalorics.

Graphical abstract: Pb(Fe0.5Nb0.5)O3–BiFeO3-based multicalorics with room-temperature ferroic anomalies

Back to tab navigation

Supplementary files

Article information


Submitted
14 May 2020
Accepted
07 Jul 2020
First published
17 Jul 2020

This article is Open Access

J. Mater. Chem. C, 2020,8, 11282-11291
Article type
Paper

Pb(Fe0.5Nb0.5)O3–BiFeO3-based multicalorics with room-temperature ferroic anomalies

U. Prah, M. Wencka, T. Rojac, A. Benčan and H. Uršič, J. Mater. Chem. C, 2020, 8, 11282
DOI: 10.1039/D0TC02329A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements