Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 25, 2020
Previous Article Next Article

High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst

Author affiliations

Abstract

Conductive metal–organic frameworks (MOFs) have been studied extensively in applications like water electrolysis, gas storage, and supercapacitors due to their high conductivity and large pore volume. In this communication, we report the first use of a conductive Ni-MOF as a non-noble-metal catalyst for efficient electro-oxidation of glucose in alkaline electrolyte. As an electrochemical sensor for glucose detection, this Ni-MOF shows a fast response time of less than 3 s, a low detection limit of 0.66 μM (S/N = 3), and a high sensitivity of 21 744 μA mM−1 cm−2. This glucose sensor also displays excellent selectivity, stability and reproducibility, and its application for the detection of glucose in real samples is also demonstrated successfully.

Graphical abstract: High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst

Back to tab navigation

Supplementary files

Article information


Submitted
14 Jan 2020
Accepted
07 May 2020
First published
08 May 2020

J. Mater. Chem. B, 2020,8, 5411-5415
Article type
Communication

High-performance non-enzymatic glucose detection: using a conductive Ni-MOF as an electrocatalyst

Y. Qiao, Q. Liu, S. Lu, G. Chen, S. Gao, W. Lu and X. Sun, J. Mater. Chem. B, 2020, 8, 5411
DOI: 10.1039/D0TB00131G

Social activity

Search articles by author

Spotlight

Advertisements