Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Synthesis and characterisation of biocompatible organic–inorganic core–shell nanocomposite particles based on ureasils

Author affiliations

Abstract

Organic–inorganic core–shell nanocomposites have attracted increasing attention for applications in imaging, controlled release, biomedical scaffolds and self-healing materials. While tunable properties can readily be achieved through the selection of complementary building blocks, synergistic enhancement requires management of the core–shell interface. In this work, we report a one-pot method to fabricate hybrid core–shell nanocomposite particles (CSNPs) based on ureasils. The native structure of ureasils, which are poly(oxyalkylene)/siloxane hybrids, affords formation of an organic polymer core via nanoprecipitation, while the terminal siloxane groups act as a template for nucleation and growth of the silica shell via the Stöber process. Through optimisation of the reaction conditions, we demonstrate the reproducible synthesis of ureasil CSNPs, with a hydrodynamic diameter of ∼150 nm and polydispersity <0.2, which remain electrostatically stabilised in aqueous media for >50 days. Selective functionalisation, either through the physical entrapment of polarity-sensitive fluorescent probes (coumarin 153, pyrene) or covalent-grafting to the silica shell (fluorescein isothiocyanate) is also demonstrated and provides insight into the internal environment of the particles. Moreover, preliminary studies using a live/dead cell assay indicate that ureasil CSNPs do not display cytotoxicity. Given the simple fabrication method and the structural tunability and biocompatability of the ureasils, this approach presents an efficient route to multifunctional core–shell nanocomposite particles whose properties may be tailored for a targeted application.

Graphical abstract: Synthesis and characterisation of biocompatible organic–inorganic core–shell nanocomposite particles based on ureasils

Back to tab navigation

Supplementary files

Article information


Submitted
12 Jan 2020
Accepted
07 Apr 2020
First published
21 Apr 2020

J. Mater. Chem. B, 2020, Advance Article
Article type
Paper

Synthesis and characterisation of biocompatible organic–inorganic core–shell nanocomposite particles based on ureasils

I. Meazzini, S. Comby, K. D. Richards, A. M. Withers, F. Turquet, J. E. Houston, R. M. Owens and R. C. Evans, J. Mater. Chem. B, 2020, Advance Article , DOI: 10.1039/D0TB00100G

Social activity

Search articles by author

Spotlight

Advertisements