Issue 25, 2020

Operando structural and chemical evolutions of TiS2 in Na-ion batteries

Abstract

Titanium disulfide (TiS2) with high electric conductivity, fast rate capability, and good cycling performance is a promising candidate for electrode material in sodium (Na)-ion batteries. Despite the well-studied electrochemical behaviors of TiS2 in Li-ion batteries, the detailed reaction mechanism of TiS2 in Na-ion batteries is not yet fully understood due to a more complex multi-phase conversion process. In this work, reactions of TiS2 in Na-ion batteries are investigated via a multi-modal synchrotron approach: operando X-ray Absorption Spectroscopy (XAS) – including X-ray Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) – and ex situ X-ray Powder Diffraction (XPD), coupled with computational modeling. Operando XANES spectra indicate that the redox reactions occur in both Ti and S during the electrochemically driven phase transformation. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) analysis of XAS suggests that different numbers of components are involved in the lithiation and sodiation of TiS2, with the sodiation including at least one intermediate phase in addition to the starting material and the final sodiation product. Ex situ XPD and Rietveld refinement further determined and quantified the unknown phases, showing that three phases, TiS2, Na0.55TiS2, and NaTiS2, participate in the sodiation of TiS2. Operando EXAFS results show the changes in the Ti–Ti coordination number and interatomic distance. This explains the coulombic efficiency decay due to the incomplete recovery of the coordination number of Ti after cycling. Overall, this work reveals the reaction mechanism occurring in Na–TiS2 batteries with a greater quantitative understanding of the structural evolution. By combining the multi-modal synchrotron approach and computational work, this study provides a framework for studying a broader range of electrochemically driven phase-transformation systems towards advanced energy storage and conversion applications.

Graphical abstract: Operando structural and chemical evolutions of TiS2 in Na-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2020
Accepted
14 Apr 2020
First published
14 Apr 2020

J. Mater. Chem. A, 2020,8, 12339-12350

Author version available

Operando structural and chemical evolutions of TiS2 in Na-ion batteries

C. Lin, M. Topsakal, K. Sun, J. Bai, C. Zhao, E. Dooryhee, P. Northrup, H. Gan, D. Lu, E. Stavitski and Y. K. Chen-Wiegart, J. Mater. Chem. A, 2020, 8, 12339 DOI: 10.1039/D0TA00226G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements