Jump to main content
Jump to site search

Issue 2, 2020
Previous Article Next Article

Cation exchange synthesis of two-dimensional vertical Cu2S/CdS heterojunctions for photovoltaic device applications

Author affiliations

Abstract

Two-dimensional (2D) vertical heterojunctions possess peculiar electronic and optoelectronic properties according to their complementary composition, ultrathin thickness, and unique geometry. However, it is still a challenge to synthesize 2D vertical heterojunctions based on non-layered materials due to strong covalent bonds and abundant surface dangling bonds. Here we developed a partial cation exchange method for the synthesis of 2D vertical Cu2S/CdS heterojunctions. Large-size and single-crystalline CdS nanosheets prepared by a van der Waals epitaxy method served as host lattices for cation exchange reactions. The evolution of the nanosheets in terms of their morphology, composition and crystal structure was elaborately characterized. The as-prepared 2D vertical heterojunctions have two-layer ultra-thin structures and form large-area junctions at their interfaces. Under light irradiation, the photogenerated electron–hole pairs can be quickly separated under the electric field in the junction region, minimizing the possibility of charge recombination. As a result, the device based on 2D vertical Cu2S/CdS heterojunctions exhibits a higher photoelectric conversion capability compared with the device based on single-component 2D CdS or Cu2S Schottky junctions. Our work opens up opportunities to explore 2D vertical heterojunctions based on non-layered materials for high-performance optoelectronic devices.

Graphical abstract: Cation exchange synthesis of two-dimensional vertical Cu2S/CdS heterojunctions for photovoltaic device applications

Back to tab navigation

Supplementary files

Article information


Submitted
14 Oct 2019
Accepted
25 Nov 2019
First published
28 Nov 2019

J. Mater. Chem. A, 2020,8, 789-796
Article type
Paper

Cation exchange synthesis of two-dimensional vertical Cu2S/CdS heterojunctions for photovoltaic device applications

Y. Zhan, Z. Shao, T. Jiang, J. Ye, X. Wu, B. Zhang, K. Ding, D. Wu and J. Jie, J. Mater. Chem. A, 2020, 8, 789 DOI: 10.1039/C9TA11304E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements