Jump to main content
Jump to site search

Issue 41, 2020
Previous Article Next Article

Mimicking coalescence using a pressure-controlled dynamic thin film balance

Author affiliations

Abstract

The dynamics of thin films containing polymer solutions are studied with a pressure-controlled thin film balance. The setup allows the control of both the magnitude and the sign as well as the duration of the pressure drop across the film. The process of coalescence can be thus studied by mimicking the evolution of pressure during the approach and separation of two bubbles. The drainage dynamics, shape evolution and stability of the films were found to depend non-trivially on the magnitude and the duration of the applied pressure. Film dynamics during the application of the negative pressure step are controlled by an interplay between capillarity and hydrodynamics. A negative hydrodynamic pressure gradient promoted the thickening of the film, while the time-dependent deformation of the Plateau border surrounding it caused its local thinning. Distinct regimes in film break-up were thus observed depending on which of these two effects prevailed. Our study provides new insight into the behaviour of films during bubble separation, allows the determination of the optimum conditions for the occurrence of coalescence, and facilitates the improvement of population balance models.

Graphical abstract: Mimicking coalescence using a pressure-controlled dynamic thin film balance

Back to tab navigation

Supplementary files

Article information


Submitted
30 Apr 2020
Accepted
02 Aug 2020
First published
05 Aug 2020

This article is Open Access

Soft Matter, 2020,16, 9410-9422
Article type
Paper

Mimicking coalescence using a pressure-controlled dynamic thin film balance

E. Chatzigiannakis, P. Veenstra, D. ten Bosch and J. Vermant, Soft Matter, 2020, 16, 9410
DOI: 10.1039/D0SM00784F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements