A thixotropic supramolecular metallogel with a 2D sheet morphology: iodine sequestration and column based dye separation†
Abstract
Sequestration of hazardous radioactive iodine and dye separation to reduce industrial waste through reutilization is pivotal for environmental safety. In this regard, herein, the synthesis of a new waterborne ultrasensitive supramolecular metallogel (Mg@DEOA) with a 2D sheet morphology is accomplished through direct mixing of a low molecular weight gelator diethanolamine and magnesium nitrate hexahydrate. This porous metallogel (180 m2 g−1) exhibits thixotropic properties and is injectable. The material was found to be an effective (587 mg g−1) host matrix for iodine sequestration from solution. Moreover, the Mg@DEOA xerogel was used to efficiently remove rhodamine B from a mixture of dyes with high separation factors through a xerogel packed column and as an adsorbent material for water-soluble dyes and CO. This column based application demonstrated by the metallogel could be useful for practical industrial dye-separation.