Jump to main content
Jump to site search


An eco-friendly pathway to thermosensitive micellar nanoobjects via photoRAFT PISA: the full guide to poly(N-acryloylpyrrolidin)-block-polystyrene diblock copolymers

Author affiliations

Abstract

Spherical macromolecular assemblies, so-called latexes, consisting of polystyrene (PS) resemble a relevant class of synthetic polymers used for a plethora of applications ranging from coatings or lubricants to biomedical applications. Their synthesis is usually tailored to the respective application where emulsifiers, radical initiators, or other additives still play a major role in achieving the desired properties. Herein, we demonstrate an alternative based on the photoiniferter reversible addition–fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) of Poly(N-acryloylpyrrolidin)-block-polystyrene (PAPy-b-PS). This approach yields monodisperse nanospheres with tunable sizes based on an aqueous formulation with only two ingredients. These nanospheres are additionally thermosensitive, meaning that they change their hydrodynamic diameter linearly with the temperature in a broad range between 10 °C and 70 °C. Combined with the eco-friendly synthesis in pure water at 40 °C, the herein presented route constitutes an unprecedented pathway to thermosensitive diblock copolymer aggregates in short reaction times without any additives.

Graphical abstract: An eco-friendly pathway to thermosensitive micellar nanoobjects via photoRAFT PISA: the full guide to poly(N-acryloylpyrrolidin)-block-polystyrene diblock copolymers

Back to tab navigation

Supplementary files

Article information


Submitted
18 Dec 2019
Accepted
17 Jan 2020
First published
20 Jan 2020

This article is Open Access

Soft Matter, 2020, Advance Article
Article type
Paper

An eco-friendly pathway to thermosensitive micellar nanoobjects via photoRAFT PISA: the full guide to poly(N-acryloylpyrrolidin)-block-polystyrene diblock copolymers

F. Lauterbach and V. Abetz, Soft Matter, 2020, Advance Article , DOI: 10.1039/C9SM02483B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements