Jump to main content
Jump to site search

Issue 10, 2020
Previous Article Next Article

Facile in situ reductive synthesis of both nitrogen deficient and protonated g-C3N4 nanosheets for the synergistic enhancement of visible-light H2 evolution

Author affiliations

Abstract

A new strategy is reported here to synthesize both nitrogen deficient and protonated graphitic carbon nitride (g-C3N4) nanosheets by the conjoint use of NH4Cl as a dynamic gas template together with hypophosphorous acid (H3PO2) as a doping agent. The NH4Cl treatment allows for the scalable production of protonated g-C3N4 nanosheets. With the corresponding co-addition of H3PO2, nitrogen vacancies, accompanied by both additional protons and interstitially-doped phosphorus, are introduced into the g-C3N4 framework, and the electronic bandgap of g-C3N4 nanosheets as well as their optical properties and hydrogen-production performance can be precisely tuned by careful adjustment of the H3PO2 treatment. This conjoint approach thereby results in improved visible-light absorption, enhanced charge-carrier separation and a high H2 evolution rate of 881.7 μmol h−1 achieved over the H3PO2 doped g-C3N4 nanosheets with a corresponding apparent quantum yield (AQY) of 40.4% (at 420 nm). We illustrate that the synergistic H3PO2 doping modifies the layered g-C3N4 materials by introducing nitrogen vacancies as well as protonating them, leading to significant photocatalytic H2 evolution enhancements, while the g-C3N4 materials doped with phosphoric acid (H3PO4) are simply protonated further, revealing the varied doping effects of phosphorus having different (but accessible) valence states.

Graphical abstract: Facile in situ reductive synthesis of both nitrogen deficient and protonated g-C3N4 nanosheets for the synergistic enhancement of visible-light H2 evolution

Back to tab navigation

Supplementary files

Article information


Submitted
08 Oct 2019
Accepted
31 Jan 2020
First published
03 Feb 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 2716-2728
Article type
Edge Article

Facile in situ reductive synthesis of both nitrogen deficient and protonated g-C3N4 nanosheets for the synergistic enhancement of visible-light H2 evolution

W. Li, Z. Guo, L. Jiang, L. Zhong, G. Li, J. Zhang, K. Fan, S. Gonzalez-Cortes, K. Jin, C. Xu, T. Xiao and P. P. Edwards, Chem. Sci., 2020, 11, 2716
DOI: 10.1039/C9SC05060D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements