Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 40, 2020

Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors

Author affiliations

Abstract

Direct glycan–glycan interactions are increasingly implicated in survival and pathogenicity of bacteria. Here, we show that they can be exploited by protozoan parasites in their insect hosts. Force spectroscopy revealed that Leishmania promastigotes display a high-affinity biomolecular interaction between their lipophosphoglycan glycocalyx and mimics of N-acetyl-D-galactosamine, commonly expressed on the midguts of a wide range of sand fly vector species. This enabled gut-adhesive nectomonad promastigotes of Leishmania mexicana to efficiently bind to membrane-bound mucin-like, O-linked glycoproteins of the sand fly Lutzomyia longipalpis, an event crucial for parasite survival, and accounts for a permissive mode of binding. Thus, direct interaction between parasite and sand fly midgut glycans are key to permitting vector competence for all forms of leishmaniasis worldwide. In addition, these studies demonstrate the feasibility of interfering with these interactions as transmission-blocking vaccines.

Graphical abstract: Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors

Supplementary files

Article information


Submitted
13 Jun 2020
Accepted
02 Sep 2020
First published
03 Sep 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 10973-10983
Article type
Edge Article

Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors

A. R. Hall, J. T. Blakeman, A. M. Eissa, P. Chapman, A. L. Morales-García, L. Stennett, O. Martin, E. Giraud, D. H. Dockrell, N. R. Cameron, M. Wiese, L. Yakob, M. E. Rogers and M. Geoghegan, Chem. Sci., 2020, 11, 10973 DOI: 10.1039/D0SC03298K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements