Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2020
Previous Article Next Article

An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings

Author affiliations

Abstract

Carbon nitride materials have emerged as an efficient and sustainable class of heterogeneous photocatalysts, particularly when paired with nickel in dual catalytic cross-coupling reactions. Performing these transformations on larger scales using a continuous process is difficult due to the problems associated with handling solids in flow. By combining an oscillatory pump with a microstructured plug flow photoreactor, a stable suspension of the photocatalyst can be maintained, circumventing clogging of the reactor channels. Through careful tuning of the oscillator properties, the residence time distribution (RTD) was optimized, whilst maintaining a stable catalyst suspension. Short residence times (20 min) were achieved using optimized conditions and the recyclability of the photocatalyst was demonstrated over 10 cycles with no loss of activity. During a stable 4.5 hour scale-out demonstration, the model substrate could be isolated on 12 g scale (90% yield, 2.67 g h−1). Moreover, the method was applied for the gram scale synthesis of an intermediate of the active pharmaceutical ingredient tetracaine.

Graphical abstract: An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings

Back to tab navigation

Supplementary files

Article information


Submitted
24 Jan 2020
Accepted
14 Feb 2020
First published
14 Feb 2020

This article is Open Access

React. Chem. Eng., 2020,5, 597-604
Article type
Paper

An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings

C. Rosso, S. Gisbertz, J. D. Williams, H. P. L. Gemoets, W. Debrouwer, B. Pieber and C. O. Kappe, React. Chem. Eng., 2020, 5, 597
DOI: 10.1039/D0RE00036A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements