Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 33, 2020, Issue in Progress
Previous Article Next Article

A comprehensive investigation of MoO3 based resistive random access memory

Author affiliations

Abstract

The bipolar resistive switching of molybdenum oxide is deliberated while molybdenum and nickel are used as bottom and top electrodes, respectively, to present a device with resistive random access memory (RRAM) characteristics. For the trilayered structure, the SET voltage lies around 3.3 V and RESET voltage is observed to be in the −2.3 V to −2.7 V range. The conduction mechanism has been observed and revealed for the Metal–Insulator–Metal (MIM) structure which is a space-charge-limited current mechanism that follows both ohmic conduction and Child's law. Furthermore, a theoretical study has been performed by using density functional theory (DFT) to evaluate the resistance switching role of molybdenum oxide (MoO3). The structure has been studied with oxygen vacancy sites induced into the system which shows the reduction in bandgap, whereas an indirect bandgap of 1.9 eV and a direct bandgap of 3.1 eV are calculated for molybdenum oxide. Conclusively, the formation of a conduction filament which is fundamental for resistive switching has been explained through band structure and density of states per eV for oxygen vacancy structures of molybdenum oxide. The current work presents an in-depth understanding of the resistive switching mechanism involved in MoO3 based resistive random access memory devices for future data storage applications.

Graphical abstract: A comprehensive investigation of MoO3 based resistive random access memory

Back to tab navigation

Supplementary files

Article information


Submitted
16 Apr 2020
Accepted
14 May 2020
First published
20 May 2020

This article is Open Access

RSC Adv., 2020,10, 19337-19345
Article type
Paper

A comprehensive investigation of MoO3 based resistive random access memory

J. Fatheema, T. Shahid, M. A. Mohammad, A. Islam, F. Malik, D. Akinwande and S. Rizwan, RSC Adv., 2020, 10, 19337
DOI: 10.1039/D0RA03415K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements