Jump to main content
Jump to site search

Issue 30, 2020, Issue in Progress
Previous Article Next Article

Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application

Author affiliations

Abstract

Post-synthetic modification has been the most powerful strategy for covalent organic frameworks (COFs) for their functionalization in many fields. This strategy is typically achieved through the quantitative reaction between existing reactive sites on the linkers (building units) and incoming functional groups. However, usage of linkages (bonds formed to construct COFs) for the post-synthetic modification still remains limited. Herein, we develop a new post-synthetic modification route that is based on the modification of linkages. With this strategy, the imine linkages of a two-dimensional (2D) COF, TFPPy–PyTTA–COF, have been transformed into amine linkages to give the amine-linked isostructure with retention of crystallinity and porosity. The subsequent aminolysis of the amine linkages with 1,3-propane sultone and further metathetical reaction with cobalt acetate [Co(OAc)2] enable the introduction of cobalt alkyl sulfonate to the one-dimensional (1D) channel walls of the COF. The resulting ionic COF with coupled Co2+ in the frameworks shows excellent catalytic activity and good recyclability towards the cycloaddition reactions of epoxides and CO2. This strategy is of interest as it opens a way to use linkage modification for exploring the potential of COFs for different applications.

Graphical abstract: Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application

Back to tab navigation

Article information


Submitted
06 Mar 2020
Accepted
23 Apr 2020
First published
05 May 2020

This article is Open Access

RSC Adv., 2020,10, 17396-17403
Article type
Paper

Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application

Q. Yan, H. Xu, X. Jing, H. Hu, S. Wang, C. Zeng and Y. Gao, RSC Adv., 2020, 10, 17396
DOI: 10.1039/D0RA02142C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements