Jump to main content
Jump to site search

Issue 28, 2020, Issue in Progress
Previous Article Next Article

Structural investigation of ternary PdRuM (M = Pt, Rh, or Ir) nanoparticles using first-principles calculations

Author affiliations

Abstract

We perform first-principles calculations and Monte Carlo sampling to investigate the structures of ternary PdRuM (M = Pt, Rh, or Ir) nanoparticles (NPs) with respect to three different spherical shapes. The morphologies include hexagonal close-packed (hcp), truncated-octahedral (fcc), and icosahedral (Ih, fcc) shapes with 57, 55, and 55 atoms, respectively. The calculations show that the atomic position is dominant in determining the stability of the ternary NPs. For bare ternary NPs, Pd and Ru atoms favor a location on the vertex sites and the core, respectively, which can be understood by the surface energy of the corresponding slab models. For single-crystalline NPs, the binary shell could be either a solid solution or a segregation alloy depending on composition and morphology. However, polycrystalline Ih NPs only form segregated binary shells surrounding the Ru core. Such configurations tend to minimize the surface lattice to gain more energy from the d orbital of the transition metals. In addition to the bare NPs, we study the oxidized ternary NPs. The results show that the Ru atoms penetrate outwards from the core to the surface reducing the oxidation formation energy. Furthermore, oxygen adsorption facilitates Pt, Pd, and Pd penetration into the PdRuPt, PdRuRh, and PdRuIr NPs, respectively. Most of the oxide shells are a solid solution, except for the PdRuRh NP with an Ih shape, which is found to be in a segregation shell. The free energy calculation reveals that the pure hcp NPs are thermodynamically unstable under oxygen-rich conditions. This work clearly demonstrates the structural trends of small ternary NPs and their oxidation, unveiling that the structural trends can be understood by the surface formation energy and the interplay between adsorbent and adsorbing oxygen atoms.

Graphical abstract: Structural investigation of ternary PdRuM (M = Pt, Rh, or Ir) nanoparticles using first-principles calculations

Back to tab navigation

Supplementary files

Article information


Submitted
21 Feb 2020
Accepted
05 Apr 2020
First published
27 Apr 2020

This article is Open Access

RSC Adv., 2020,10, 16527-16536
Article type
Paper

Structural investigation of ternary PdRuM (M = Pt, Rh, or Ir) nanoparticles using first-principles calculations

S. Hung, H. Akiba, O. Yamamuro and T. Ozaki, RSC Adv., 2020, 10, 16527
DOI: 10.1039/D0RA01661F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements