Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2020, Issue in Progress
Previous Article Next Article

Biodegradable rare earth fluorochloride nanocrystals for phototheranostics

Author affiliations

Abstract

Rare earth (RE) doped inorganic nanocrystals have been demonstrated as efficient contrast agents for deep tissue shortwave-infrared (SWIR) imaging with high sensitivities leading to potential early detection of tumors. However, a potential concern is the unknown long-term toxicity and incompatibility of inorganic nanocrystals. In this work, biodegradable rare earth nanocrystals of Nd doped SrFCl coated with polydopamine (SrFCl:Nd@PDA) were designed. Instead of traditional fluoride hosts, the chlorinated SrF2 (i.e. SrFCl) with low phonon energy which significantly improved the brightness of SrFCl:Nd in the SWIR region was used as the host. After coating with a NIR-absorptive PDA layer, the SrFCl:Nd nanoparticles serve as not only a contrast agent for photoacoustic imaging, but also a potential photothermal agent for cancer therapy. Moreover, these SrFCl:Nd@PDA nanoparticles can be rapidly and completely degraded in phosphate buffer solution within 1 h, which effectively addresses the concerns of the deleterious effects arising from potential long term accumulation. The increased accumulation and retention at tumor sites, and complete in vivo clearance ∼6 h after injection make these SrFCl:Nd@PDA nanoparticles a promising degradable phototheranostic agent.

Graphical abstract: Biodegradable rare earth fluorochloride nanocrystals for phototheranostics

Back to tab navigation

Supplementary files

Article information


Submitted
24 Jan 2020
Accepted
13 Apr 2020
First published
20 Apr 2020

This article is Open Access

RSC Adv., 2020,10, 15387-15393
Article type
Paper

Biodegradable rare earth fluorochloride nanocrystals for phototheranostics

X. Zhao, Q. Yu, J. Yuan, N. V. Thakor and M. C. Tan, RSC Adv., 2020, 10, 15387
DOI: 10.1039/D0RA00760A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements