Jump to main content
Jump to site search

Issue 9, 2020, Issue in Progress
Previous Article Next Article

The influence of molecular vicinity (expressed in terms of dielectric constant) on the infrared spectra of embedded species in ices and solid matrices

Author affiliations

Abstract

In this theoretical work we evaluate how the chemical environment influences some features presented in the infrared spectrum, such as band intensities and band location of embedded species in icy matrices. The calculations were performed employing the Polarized Continuum Model (PCM) approach with the second-order Møller–Plesset perturbation theory (MP2) level using the Gaussian 09 package. Here, we simulate the effects of molecular vicinity around embedded species in terms of the effects of the dielectric constant (ε) of the icy and solid samples. Gas phase calculation was also performed for comparison purpose. The investigated embedded single molecules were CO, CO2, CH4, NH3, SO2 HCOOH, CH3OH and also H2O. The results suggest that for most vibrational modes, the strengths of IR bands show an increase with ε, which implies they also decrease with respect to porosity. The frequency shifts showed opposite behavior in relation to the band strengths, with few exceptions. A correlation between calculated band intensities with the band strengths A (taken from literature) was determined and described by a linear function I ∼ 6 × 1018 A [km mol−1], with A in unity of cm per molecule. In addition, an associative exponential function was adjusted to the studied dataset to characterize the evolution of frequency-shift and intensity-shift and band strength ratio as function of the dielectric constant. Since astrophysical ice mantles over cold dust grains can vastly vary in composition in space (having different dielectric constants) they are a challenge to be well characterized. Therefore, this work can help the astrochemistry community to better understand astrophysical ices and its observations in the infrared.

Graphical abstract: The influence of molecular vicinity (expressed in terms of dielectric constant) on the infrared spectra of embedded species in ices and solid matrices

Back to tab navigation

Article information


Submitted
03 Dec 2019
Accepted
24 Jan 2020
First published
03 Feb 2020

This article is Open Access

RSC Adv., 2020,10, 5328-5338
Article type
Paper

The influence of molecular vicinity (expressed in terms of dielectric constant) on the infrared spectra of embedded species in ices and solid matrices

P. S. and B. V. S., RSC Adv., 2020, 10, 5328
DOI: 10.1039/C9RA10136E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements