Jump to main content
Jump to site search

Issue 45, 2020
Previous Article Next Article

Supramolecular protein polymers using mini-ferritin Dps as the building block

Author affiliations

Abstract

A missense mutant of a Dps protein (DNA-binding protein from starved cells) from Marinobacter hydrocarbonoclasticus was used as a building block to develop a new supramolecular assembly complex which enhances the iron uptake, a physiological function of this mini-ferritin. The missense mutation was conducted in an exposed and flexible region of the N-terminal, wherein a threonine residue in position 10 was replaced by a cysteine residue (DpsT10C). This step enabled a click chemistry approach to the variant DpsT10C, where a thiol–ene coupling occurs. Two methods and two types of linker were used resulting in two different mini-ferritin supramolecular polymers, which have maintained secondary structure and native iron uptake physiological function. Electrophoretic assays and mass spectrometry were utilized to confirm that both functionalization and coupling reactions occured as predicted. The secondary structure has been investigated by circular dichroism and synchrotron radiation circular dichroism. Size and morphology were obtained by dynamic light scattering, size exclusion chromatography and atomic force microscopy, respectively. The iron uptake of the synthesized protein polymers was confirmed by UV-Vis spectroscopy loading assays.

Graphical abstract: Supramolecular protein polymers using mini-ferritin Dps as the building block

Back to tab navigation

Supplementary files

Article information


Submitted
17 Aug 2020
Accepted
27 Oct 2020
First published
10 Nov 2020

Org. Biomol. Chem., 2020,18, 9300-9307
Article type
Paper

Supramolecular protein polymers using mini-ferritin Dps as the building block

M. R. Pacheco, J. P. Jacinto, D. Penas, T. Calmeiro, A. V. Almeida, M. Colaço, E. Fortunato, N. C. Jones, S. V. Hoffmann, M. M. A. Pereira, P. Tavares and A. S. Pereira, Org. Biomol. Chem., 2020, 18, 9300
DOI: 10.1039/D0OB01702G

Social activity

Search articles by author

Spotlight

Advertisements