Jump to main content
Jump to site search

Issue 15, 2020
Previous Article Next Article

Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose

Author affiliations

Abstract

Recent advances in drug delivery and controlled release had a great impact on bioscience, medicine and tissue engineering. Consequently, a variety of advanced drug delivery vehicles either have already reached the market or are approaching the phase of commercial production. Progressive growth of the drug delivery market has led to the necessity to earnestly concern about economically viable, up-scalable and sustainable technologies for a large-scale production of drug delivery carriers. We have identified three attractive natural sources of drug carriers: aluminosilicate clays, minerals of calcium carbonate, and cellulose. Three classes of drug delivery carriers derived from these natural materials are halloysite nanotubes, vaterite crystals and nanocellulose. These carriers can be produced using “green” technologies from some of the most abundant sources on the Earth and have extremely high potential to meet all criteria applied for the manufacture of modern delivery carriers. We provide an up-to-date snapshot of these drug delivery vehicles towards their use for bioapplications, in particular for drug delivery and tissue engineering. The following research topics are addressed: (i) the availability, sources and methodologies used for production of these drug delivery vehicles, (ii) the drug loading and release mechanisms of these delivery vehicles, (iii) in vitro, in vivo, and clinical studies on these vehicles, and (iv) employment of these vehicles for tissue engineering. Finally, the prospects for vehicles’ further development and industrialisation are critically assessed, highlighting most attractive future research directions such as the design of third generation active biomaterials.

Graphical abstract: Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose

Back to tab navigation

Article information


Submitted
31 Dec 2019
Accepted
07 Mar 2020
First published
18 Mar 2020

This article is Open Access

New J. Chem., 2020,44, 5638-5655
Article type
Perspective

Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose

A. Vikulina, D. Voronin, R. Fakhrullin, V. Vinokurov and D. Volodkin, New J. Chem., 2020, 44, 5638
DOI: 10.1039/C9NJ06470B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements