Issue 8, 2020

Local manipulation of metamagnetism by strain nanopatterning

Abstract

Among metamagnetic materials, FeRh alloys are technologically appealing due to their uncommon antiferromagnetic-to-ferromagnetic metamagnetic transition which occurs at a temperature T* just above room temperature. Here, a controlled increase of T* (ΔT* ∼ 20 °C) is induced in pre-selected regions of FeRh films via mechanical strain nanopatterning. Compressive stresses generated at the vicinity of pre-defined nanoindentation imprints cause a local reduction of the FeRh crystallographic unit cell parameter, which leads to an increase of T* in these confined micro-/nanometric areas. This enhances the stability of the antiferromagnetic phase in these localized regions. Remarkably, generation of periodic arrays of nanopatterned features also allows modifying the overall magnetic and electric transport properties across large areas of the FeRh films. This approach is highly appealing for the design of new memory architectures or other AFM-spintronic devices.

Graphical abstract: Local manipulation of metamagnetism by strain nanopatterning

Supplementary files

Article information

Article type
Communication
Submitted
10 Apr 2020
Accepted
13 May 2020
First published
14 May 2020
This article is Open Access
Creative Commons BY-NC license

Mater. Horiz., 2020,7, 2056-2062

Local manipulation of metamagnetism by strain nanopatterning

M. Foerster, E. Menéndez, E. Coy, A. Quintana, C. Gómez-Olivella, D. Esqué de los Ojos, O. Vallcorba, C. Frontera, L. Aballe, J. Nogués, J. Sort and I. Fina, Mater. Horiz., 2020, 7, 2056 DOI: 10.1039/D0MH00601G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements