Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 4, 2020
Previous Article Next Article

A three-dimensional porous MoS2–PVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents

Author affiliations

Abstract

Three-dimensional (3D) aerogels have attracted more and more attention in oil–water separation, due to their advantages of low density, high porosity, and large specific surface area. However, their application is greatly limited due to their hydrophilic and low adsorption properties. In this work, we report a 3D MoS2–polyvinylpyrrolidone (PVP) aerogel, prepared by a freeze-drying method, where PVP was used as a skeleton to support the aerogel. As a surfactant, PVP can easily attach to the surface of MoS2 nanosheets and facilitate the interconnection between nanosheets. The 3D MoS2–PVP aerogel exhibits low density, high porosity, good hydrophobicity, and excellent adsorption capacity (195–649 times). Moreover, after 30 cycles, the structure of the 3D MoS2–PVP aerogel is well kept and the adsorption capacity is still retained, at 93.5% and 92.9%, by squeezing and distillation, respectively. Therefore, the obtained 3D MoS2–PVP aerogel is a promising adsorption material and has great practical application potential in oil–water separation.

Graphical abstract: A three-dimensional porous MoS2–PVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents

Back to tab navigation

Supplementary files

Article information


Submitted
18 Apr 2020
Accepted
03 Jun 2020
First published
05 Jun 2020

This article is Open Access

Mater. Adv., 2020,1, 760-766
Article type
Paper

A three-dimensional porous MoS2–PVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents

P. Song, J. Di, H. Chen, S. Zhao, C. Wu, X. Cao, M. Wang, J. Xiong and X. Ye, Mater. Adv., 2020, 1, 760
DOI: 10.1039/D0MA00219D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements