Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 6, 2020
Previous Article Next Article

Room-temperature application of VO2 microstructures on rigid and flexible substrates based on synthesis of crystalline VO2 solution

Author affiliations

Abstract

The insulator-to-metal transition (IMT) in vanadium dioxide (VO2) offers temperature-dependent infrared wavelength attenuation, rendering it a great contender for bolometers, optoelectronics, memory devices, smart-windows adaptive thermal camouflage applications. However, the required high temperature processing (up to 600 °C) of VO2 inhibits its widespread utilization, particularly in applications with low fabrication temperature limits – such as devices on flexible polymer substrates. This study provides a new method that relies on van der Waals substrates with inert basal planes and hydrophilic surfaces to overcome the hurdle of high processing temperatures. Using this method, highly-oriented, optically active crystalline VO2 was deposited on both glass and flexible polyethylene terephthalate (PET) substrates. We observe VO2 crystals during IMT using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and report >60% change in transmission on both glass and flexible PET, as well as demonstrating IR modulation.

Graphical abstract: Room-temperature application of VO2 microstructures on rigid and flexible substrates based on synthesis of crystalline VO2 solution

Back to tab navigation

Supplementary files

Article information


Submitted
22 May 2020
Accepted
23 Aug 2020
First published
09 Sep 2020

This article is Open Access

Mater. Adv., 2020,1, 1685-1694
Article type
Paper

Room-temperature application of VO2 microstructures on rigid and flexible substrates based on synthesis of crystalline VO2 solution

M. Taha, E. L. H. Mayes, M. R. Field, M. Sun, M. Singh and W. Zou, Mater. Adv., 2020, 1, 1685
DOI: 10.1039/D0MA00338G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements