Issue 13, 2020

Photocathode-assisted redox flow desalination


Desalination techniques, such as reverse osmosis, distillation, capacitive deionization, and battery desalination, require lots of electrical or thermal energy consumption. Herein, we propose a consumption-free electrochemical desalination method based on a light-driven photocathode with a Pt/CdS/Cu2ZnSnS4(CZTS)/Mo architecture. Modification of a CdS layer on CZTS can improve the desalination performance due to the formation of inner p–n junction between CdS and CZTS which enhances the separation of the photoexcited carriers without recombination. This photocathode-assisted electrodialysis desalination plays the dual functions of both energy conversion and ion removal with the blocking of ion exchange membranes. The [Fe(CN)6]3−/4− redox couples are recirculated between the anode and photo-cathode as the electrolyte while the salt streams are fed into the middle compartment. Under light illumination, this architecture produces photo-generated electrons to the redox couples with the conversion of [Fe(CN)6]3− to [Fe(CN)6]4− at the positive chamber, causing cation capture in the presence of an ion-exchange membrane. At the same time, [Fe(CN)6]4− is oxidized at the negative reservoir. The light-driven electrochemical reaction of electrolyte redox couples can result in a continuous desalination process. This work will be significant for consumption-free photoelectrochemical desalination research.

Graphical abstract: Photocathode-assisted redox flow desalination

Supplementary files

Article information

Article type
04 Apr 2020
27 May 2020
First published
17 Jun 2020

Green Chem., 2020,22, 4133-4139

Photocathode-assisted redox flow desalination

M. Liang, K. Feng, R. Karthick, L. Zhang, Y. Shi, K. S. Hui, K. N. Hui, F. Jiang and F. Chen, Green Chem., 2020, 22, 4133 DOI: 10.1039/D0GC01191F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity