Jump to main content
Jump to site search

Volume 222, 2020
Previous Article Next Article

Photophysical properties of ball milled silicon nanostructures

Author affiliations


Luminescent silicon nanocrystals (SiNCs) have attracted scientific interest for their potential use in LEDs, displays, lasers, photovoltaic spectral-shifting filters and for biomedical applications. A lot of efforts have been made to improve the radiative emission rate in SiNCs, mostly using quantum confinement, strain and ligands. Existing methods, however, are not easily upscalable, as they do not provide the high material yield required for industrial applications. Besides, the photoluminescence (PL) efficiency of SiNCs emitting in the visible spectral range also remains very low. Hence, there is a need to develop a low-cost method for high material yield of brightly emitting SiNCs. Theoretically, strain can be used alongside quantum confinement to modify the radiative emission rates and band-gaps. In view of that, high-energy ball milling is a method that can be used to produce large quantities of highly strained SiNCs. In this technique, balls with high kinetic energy collide with the walls of a chamber and other balls, crushing the particles in between, followed by welding, fracture and re-welding phenomena, reducing the particle size and increasing strains in the samples. In this study, we have used high-energy ball milling in an inert gas atmosphere to synthesize SiNCs and study their photophysical properties. The induced accumulation of high strain, quantum confinement and possibly also impurities in the SiNCs resulted in visible light spectrum PL at room temperature. This method is low cost and easily up-scalable to industrial scale.

Graphical abstract: Photophysical properties of ball milled silicon nanostructures

Back to tab navigation

Associated articles

Supplementary files

Article information

07 Oct 2019
22 Oct 2019
First published
22 Oct 2019

Faraday Discuss., 2020,222, 96-107
Article type

Photophysical properties of ball milled silicon nanostructures

A. Goyal, M. Demmenie, C. Huang, P. Schall and K. Dohnalova, Faraday Discuss., 2020, 222, 96
DOI: 10.1039/C9FD00105K

Social activity

Search articles by author