Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2020
Previous Article Next Article

Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease

Author affiliations

Abstract

Organic solvents are common chemicals used in industry throughout the world, however, there is evidence for adverse health effects from exposure to these compounds. Trichloroethylene (TCE) is a halogenated solvent that has been used as a degreasing agent since the early 20th century. Due to its widespread use, TCE remains one of the most significant environmental contaminants in the US, and extensive research suggests TCE is a causative factor in a number of diseases, including cancer, fetal cardiac development, and neurotoxicity. TCE has also been implicated as a possible risk factor in the development of the most common neurodegenerative movement disorder, Parkinson's disease (PD). However, there is variable concordance across multiple occupational epidemiological studies assessing TCE (or solvent) exposure and risk for PD. In addition, there remains a degree of uncertainty about how TCE elicits toxicity to the dopaminergic system. To this end, we review the specific neurotoxic mechanisms of TCE in the context of selective vulnerability of dopaminergic neurons. In addition, we consider the complexity of combined risk factors that ultimately contribute to neurodegeneration and discuss the limitations of single-factor exposure assessments.

Graphical abstract: Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease

Back to tab navigation

Article information


Submitted
10 Dec 2019
Accepted
20 Jan 2020
First published
21 Jan 2020

Environ. Sci.: Processes Impacts, 2020,22, 543-554
Article type
Critical Review

Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease

B. R. De Miranda and J. T. Greenamyre, Environ. Sci.: Processes Impacts, 2020, 22, 543
DOI: 10.1039/C9EM00578A

Social activity

Search articles by author

Spotlight

Advertisements