Jump to main content
Jump to site search

Issue 8, 2020
Previous Article Next Article

Photo-rechargeable zinc-ion batteries

Author affiliations


Batteries that can be directly recharged by light would offer a new approach to balancing the unpredictable energy surpluses and deficits associated with solar energy. Here, we present a new aqueous zinc-ion battery (photo-ZIB) that can directly harvest sunlight to recharge without the need for external solar cells. The light charging process is driven by photo-active cathodes consisting of a mixture of vanadium oxide (V2O5) nanofibers, poly(3-hexylthiophene-2,5-diyl) and reduced graphene oxide, which provide the desired charge separation and storage mechanism. This process is studied using photodetectors, transient absorption spectroscopy and electrochemical analysis in dark and light conditions. The V2O5 cathodes have gravimetric capacities of ∼190 mA h g−1 and ∼370 mA h g−1 in dark and illuminated conditions respectively and photo-conversion efficiencies of ∼1.2%. Finally, we demonstrate a fully functional photo-ZIB with a ∼64 cm2 optical window in pouch cell format.

Graphical abstract: Photo-rechargeable zinc-ion batteries

Back to tab navigation

Supplementary files

Article information

03 May 2020
19 Jun 2020
First published
23 Jun 2020

This article is Open Access

Energy Environ. Sci., 2020,13, 2414-2421
Article type

Photo-rechargeable zinc-ion batteries

B. D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W. M. Dose and M. De Volder, Energy Environ. Sci., 2020, 13, 2414
DOI: 10.1039/D0EE01392G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Social activity

Search articles by author